Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes

نویسندگان

  • WooChul Jung
  • Harry L. Tuller
چکیده

While SOFC perovskite oxide cathodes have been the subject of numerous studies, the critical factors governing their kinetic behavior have remained poorly understood. This has been due to a number of factors including the morphological complexity of the electrode and the electrodeelectrolyte interface as well as the evolution of the surface chemistry with varying operating conditions. In this work, the surface chemical composition of dense thin film SrTi1 xFexO3-d electrodes, with considerably simplified and well-defined electrode geometry, was investigated by means of XPS, focusing on surface cation segregation. An appreciable degree of Sr-excess was found at the surface of STF specimens over the wide composition range studied. The detailed nature of the Sr-excess is discussed by means of depth and take-off angle dependent XPS spectra, in combination with chemical and thermal treatments. Furthermore, the degree of surface segregation was successfully controlled by etching the films, and/or preparing intentionally Sr deficient films. Electrochemical Impedance Spectroscopy studies, under circumstances where surface chemistry was controlled, were used to examine and characterize the blocking effect of Sr segregation on the surface oxygen exchange rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes.

Improvement of solid oxide fuel cells strongly relies on the development of cathode materials with high catalytic activity for the oxygen reduction reaction. Excellent activity was found for perovskite-type oxides such as La1-xSrxCoO3-δ (LSC), but performance degradation, probably caused by surface composition changes, hinders exploitation of the full potential of LSC. This study reveals that t...

متن کامل

Improved electrochemical stability at the surface of La(0.8)Sr(0.2)CoO3 achieved by surface chemical modification.

The degradation of the surface chemistry on perovskite (ABO3) oxides is a critical issue for their performance in energy conversion systems such as solid oxide fuel/electrolysis cells and in splitting of H2O and CO2 to produce fuels. This degradation is typically in the form of segregation and phase separation of dopant cations from the A-site, driven by elastic and electrostatic energy minimiz...

متن کامل

Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites.

Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011